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An experiment called M I S T E  (Microgravity  Scaling  Theory  Experiment) is 
being  developed for  a future  mission  on the International  Space  Station.  The 
main objective of this flight experiment  is  to  perform  in-situ PVT, heat ca- 
pacity  at  constant  volume, Cv,  and  isothermal  susceptibility, X I - ,  measure- 
ments in the asymptotic  region of the 3He liquid-gas  critical  point. O n  the 
ground,  gravity  induces  a  density  gradient  that  does  not  permit  an  accurate 
test of theoretical  predictions  within  the  asymptotic region. I n  preparation  for 
this  flight  experiment,  precision  ground-based  measurements are now being 
performed in the crossover  region  away from  the  critical  point  to  determine 
the  crossover  parameters.  Recent Cv and XT measurements  along  the  critical 
isochore  have been analyzed  using  a  new  crossover  parametric  equation-of- 
state  and  a  field  theoretical  Renormaliaation  Group  calculation based upon 
the c $ ~  model. A description of the  experimental  techniques  and  preliminary 
results of the  theoretical  analyses  will be presented. 
PACS  numbers:  64.60. -i, 64.60. Ak, 05.10. Ce, 05.70. Jk 

1. INTRODUCTION 

The  introduction of the homogeneous postulate  to  explain  the singu- 
lar behavior of thermodynamic  quantities  near a critical  point led to a set 
of scaling relations between the  critical  exponents  that describe the ex- 
pected  leading and confluent power  law singularities.? The  application of 
Renormalization-Group  theory? to the  study of critical  phenomena has pro- 
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vided a fundamental  justification for the scaling relations. This RG theory 
has been used to calculate the critical  exponents  and  universal  asymptotic 
amplitude  ratios for a wide range of universality classes. The most  recent 
calculated values for these  exponents?  are believed to  be highly accurate, 
and a majority of the scientific community is confident that these predic- 
tions  correctly  describe the  asymptotic behavior of these  systems. However, 
the  situation is less well understood  regarding the asymptotic  amplitude  ra- 
tios  and  the behavior  in the crossover region where critical  fluctuations  no 
longer dominate  the behavior of the system. 

In  the early  years,  emphasis was placed on  theoretical  and  experimental 
studies of the liquid-gas critical  point (which belongs to  the 3-dimensional 
Ising  model  universality class) because this  system  permitted the measure- 
ment of a wide variety of thermodynamic  properties  within the critical region 
and could be used to test scaled  equation-of-state models. In  this  system, 
the order  parameter is the difference between the  system's  density  and  the 
critical  density.  Unfortunately, the liquid-gas critical  point is subject to lim- 
itations  resulting from the effects of gravity. In  the  Earth's  gravitational 
field, a density  stratification  is  induced in a fluid layer of finite  vertical 
height. This  stratification  does  not  permit  an  accurate  test of theoretical 
predictions  within the  asymptotic region. For this reason, a NASA flight 
experiment called "Microgravity Scaling Theory  Experiment"  (MISTE) was 
proposed to perform a set of thermodynamic  measurements  very close to  the 
liquid-gas critical  point of 3He in a microgravity  environment.? 

The  MISTE flight experiment  plans to perform  heat  capacity at con- 
stant volume, Cv,  isothermal  susceptibility, X T ,  and PVT measurements  in 
the  same  experimental cell. The objective  is to obtain gravity-free  measure- 
ments at least two decades  in  reduced temperature closer to  the  transition 
than  can  be  obtained  on  the  ground.  The microgravity  experiments  should 
permit  an  accurate  determination of the leading  nonuniversal asymptotic 
critical  amplitudes that will provide a more accurate analysis of crossover 
measurements  farther away from the  transition. 

An exact  determination of the  asymptotic region cannot  be  made  theo- 
retically  because the leading  critical  amplitudes are system dependent,  and 
there  are  additional correction-to-scaling confluent singularities that also 
contain  system-dependent  amplitudes.  Taking  into  account  these  correction- 
to-scaling terms leads to  the following theoretical expressions for the  heat 
capacity, Cv, and  isothermal  susceptibility, X T ,  along the  critical isochore: 

.I + B c r  

. . . I ,  
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where cy 2: 0.11 and y 2: 1.24 are universal  critical  exponents and Aof and 
r'of are  system-dependent  critical  amplitudes. The superscripts "+" and "-" 
correspond to positive and negative  reduced temperatures t E (T - Tc)/Tc, 
respectively. The system-dependent  critical  parameters are T,, pc ,  and PC, 
and B,, is a constant, fluctuation-induced term.  The confluent singularity 
expansion  in the brackets  includes a new independent universal correction-to- 
scaling exponent,? A, = 0.52f0.02 and new system-dependent  amplitudes 
A: and I?:. In analyzing  heat-capacity  measurements, an  analytic back- 
ground  term B a  must be included. In  the present  analysis, we conveniently 
define this background term as a polynomial: 

2. RECENT  GROUND-BASED  MEASUREMENTS 

Ground-based  measurements  along the critical isochore are now being 
performed in  preparation for the MISTE flight experiment.?  These  measure- 
ments were performed  in a flat pancake fluid cell shown in Fig. ??. A 
GdC13 high resolution  thermometer  (HRT)  with a sensitivity of 1 nK at Tc 
= 3.31 K was used to measure the cell temperature. A  parallel plate capac- 
itor  situated half way between the  top  and  bottom of the cell served as a 
density  sensor. The density was determined  from the capacitance using the 
Clausius-Mossotti  equation.  A Straty-Adams  type pressure  sensor was also 
situated at  the midplane of the cell. This sensor  consisted of a parallel plate 
capacitor  with  one  plate  attached to a flexible diaphragm that sensed pres- 
sure changes in the cell. This configuration has  the  advantage  that  the  heat 
capacity  and  susceptibility  could be measured  in the  same cell and  pressure, 
density  and  temperature  data could also be continuously obtained. 

The  isothermal susceptibility, XT = p ( d p / d P ) ~ ,  was measured  along 
isotherms in the single-phase region. This was achieved by initially overfill- 
ing the cell. Fluid was then slowly removed from the cell using an  in-situ 
charcoal  adsorption  pump while maintaining a constant cell temperature. 
Susceptibility data were obtained from the P - p curves in the reduced  tem- 
perature  range of 5 x < t < 10-l. The critical  density was obtained 
from the inflection point in a P - p curve that is associated with  the inverse 
of the maximum of the susceptibility. As t -+ O+ the maximum of XT versus 
p approaches the critical  density, pc. The raw data can  be smoothed  and 
used to  determine  the  density corresponding to  the maximum in X T .  Af- 
ter  the  susceptibility  measurements, the low temperature valve was closed 
at  the critical density. Then  heat-capacity measurements were performed 
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Fig. 1. Schematic of ground-based cell for measuring  heat  capacity  and 
susceptibility. 

using a  pulse  technique in the single and two phase regions over the range 
5 x < It[ < lo-'. These new Cv and XT data agreed  with  earlier  mea- 
surements from Horst  Meyer's group?l?7?  over the same  temperature range. 
In the present  analyses, we have used the recent data since they were ob- 
tained in the  same cell during  the  same low temperature  run. 

3. CROSSOVER PARAMETRIC EQUATION OF STATE 

The recent  experimental data have been described  using a new para- 
metric crossover equation-of-state.? This equation-of-state  is  based  on the 
original asymptotic  extended  parametric  model  that  has  been designed to 
satisfy  all  theoretically known asymptotic  amplitude ratios.? The  paramet- 
ric  representation of the scaling fields hl, hz, and  the  critical  part AF of 
the dimensionless  density of the  thermodynamic  potential, in terms of the 
parametric variables T and 8, is 

hl  = z o P e ( l  - e2), (4) 

h2 = ~ ( 1  - b202),  ( 5 )  

and 
1 
2 

where w(0) is an  analytic  function  of 6' 

AP = T2-QW(e) + a C r T 2 ( 1  - b 2 e 2 2  ) , 

L 
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nto and lo are two system-dependent coefficients, and  the  term 3 B c r r 2 ( 1  - 
6282)2 represents  a  fluctuation-induced  caloric  background. The order pa- 
rameter is  given by 91 = (aAP/ah1)h2. For simple fluids, to a first  approx- 
imation 91 = ( p / p c  - l ) ,  h2 = t ,  and hl = p - pc ,  which is the difference 
between the chemical potential p and its critical value pc. The  parameter b2 
and  the coefficients wo ... w3 are selected  such that all asymptotic universal 
amplitudes  ratios  are satisfied  within  their  theoretical  accuracy  with use of 
the approach  suggested by Fisher et al.? 

To develop a crossover parametric  equation for the free energy, the vari- 
able r is rescaled  in  such a way that  it provides the mean-field limit (van der 
Waals-like behavior)  far  away  from the critical  point. The equations for the 
scaling fields and  the  thermodynamic  potential  are also modified. The field 
hl is rescaled in the following  way 

hl = t o , 3 / 2 y ( 2 o a - 3 ) / 2 a s e ( 1  - 6 2 )  

while the  dependence of the field h2 on T and 0 is left unchanged. The 
crossover critical part APX of the field-dependent thermodynamic  potential 
P(hl ,  h2) written  in  terms of T and 8 becomes 

(8) 

AP, ( T ,  e) = r 2 Y - a / A s q q  + - B c r T 2 ( 1  - b e , 1 2 2 2  
2 (9) 

where 
G(e) = molo [wo + w1e2 + w2e4 + w3e6] , (10) 

B,, = -2~7~0lowo < o is  a constant, mo = rnogP-’/’, to = 109 0 6 - 3 / 2 ,  and 
g = ( i i A ) 2 / c t .  In all, there  are four system-dependent  parameters. The 
parameters lo and mo determine two asymptotic critical  amplitudes, while 
two  crossover parameters f i  and  determine  the  shape of crossover and 
the crossover temperature scale.? The  parameter ii is  a  normalized  coupling 
constant, A is a dimensionless cutoff wavenumber,  and ct characterizes the 
range of intermolecular  interaction. The form of the crossover function Y 
is the same as in the crossover Landau model developed on  the basis of 
Renormalization-Group  matching-point method:??? 

1 - (1 - f i ) Y  = f i  [1+ Y ” I A s ,   ( 1 1 )  

with K’ = C , T Y ( ~ ~ - ’ ) / ~ S .  In the  asymptotic critical  limit Y + ( ~ / g ) ~ s  so 
that 

A P ~  ( T ,  e) ”-$ A P ( ~ ,  e). ( 1 2 )  

Far away from the critical  point ( a s  T + 0 0 )  Y -P 1 and  the mean-field 
(classical)  limit is recovered. It is important  to  emphasize  that  the universal 
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Table 1. Crossover parameters for 3He obtained from the  heat  capacity  and 
susceptibility data using the  equation of state (EOS) and 44 models. 

EOS joint fit d4 fit 
Fig. ?? 

T? 3.315581 
0.168 
3.14 

3.60 f 0.08 
16.9 f 0.3 
-233 f 4 

-1140 f 74 
3.590 f 0.001 
0.150 f 0.003 

0.712 
0.941 

Fig. ?? (Solid lines) 
Ttt 3.315533 
u/u* 0.271 f 0.015 

t o  (fixed) 1 .o 
C1 2.95 
c2 8.94 
c3 -55.7 

A,+ 4.00 
r,+ 0.149 f 0.001 
AT 0.84 
r;t 1 .OOO f 0.028 

- - 

ratios of the first correction-to-scaling  amplitudes are also satisfied by this 
equation-of-state  within  their  theoretical accuracy.?9? The expressions for 
the correction-to-scaling amplitudes, which determine the  start of crossover, 
are 

r; = 0 . 5 9 0 g - ~ q l -  G ) ,  (13) 

A; = 0.446gdaS(l - ii). (14) 

The critical temperature  determined from a previous  experimental  anal- 
ysis in the 3He system? is Tc = 3.315533 K. A joint fit of the heat-capacity 
and susceptibility data was performed  with adjustable  parameters Tcfit, i i ,  
lo,  mo, and  the  heat-capacity background parameters C1 ... C4. The heat- 
capacity data were analyzed  above and below the critical  point. The suscep- 
tibility data were fit in the range t > 5 x Since the  parameters U and 

are  strongly  correlated, we fixed the  parameter A/$2 at the value 
of Ale:" = T (the value expected for the 3-dimensional king lattice with 
short range of interaction  with ct = 1).?>? The parameters lo and mo are 
related to  the  amplitudes of the  heat capacity as A$ = l.682moZo and of the 
susceptibility as I'$ = 3.383mo/lo. Thus, in a joint fit of the heat-capacity 
and susceptibility data  the  parameters lo and mo can  be  obtained.  The  an- 
alytic expressions for the leading and correction-to-scaling amplitudes  are 
obtained by expanding  the crossover function Y in powers of ran near the 
critical  point. The crossover parametric model yields the following leading 
universal amplitude  ratios: A;/AO = 0.524 and = 4.94. The results 

h. 
I 
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Fig. 2. Joint fit of critical isochore (zero-field) heat-capacity and suscepti- 
bility data for 3He  analyzed  with the crossover parametric model. 

of the fit  for the heat  capacity and susceptibility are shown  in  Fig. ?? and  the 
resultant fit parameters  and  statistical  errors  are given  in Table ??. In  Fig. 
?? we show deviations between the  experimental  data  and  the  theoretical 
description for the joint fits of heat-capacity and susceptibility data. 

4. RENORMALIZATION GROUP d4 MODEL 

The heat-capacity and susceptibility  measurements were also  analyzed 
using a field theoretical  Renormalization-Group  (RG) 44 model?  recently 
adapted  to  the 0(1) universality  class.? This model, which is based  on  first 
principles,  describes crossover behavior  in terms of the RG flow parameter 
1 .  For this  model, XT and Cv are given by 

The functions F,, F,.. fh  and F* were evaluated from Bore1 resummation 
of high-order  perturbation  series  and bk are  calculated at  the fixed point 
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Fig. 3. Relative  deviations  (in  percent) from a joint fit to  the critical iso- 
chore (zero-field) heat  capacity  (a)  and  susceptibility  (b) for 3He  using the 
crossover parametric model. 

u*.? The leading  universal amplitude  ratios predicted by this model are 
A$/Ag = 0.533 and I'$/I'; = 4.92. There  are five system-dependent pa- 
rameters ( to ,  u, x ~ ,  Co and T - ~ )  associated with Eqs. (??) - (??). In  the 
case of XT there  are  three non-universal  parameters, xo, to,  and  the  initial 
value of the coupling  constant u. After  eliminating the flow parameter 1 
from the expressions,  there  remains  only two independent parameters  that 
we have chosen as u and x0 while setting to = 1. The susceptibility data 
for T > T,, previously fit? to  the 44 model,  using  Eq. (??) yielded u/u* = 
0.271, x 0  = 0.155, et = 3.315533 K ,  and a correction-to-scaling amplitude 
I'f = 1.00 that is  consistent  with the I'F value obtained in  Table ?? for the 
parametric  equation-of-state  analysis. The susceptibility data were fit first 
since  background effects are much less important  than in the case of the  heat 
capacity. 

The recently  obtained  heat-capacity data were fit both  to  the 44 model 
close  in to  the  transition, using Eq. (??) and  then  to  this model  includ- 
ing analytical  background  terms.  In  this  analysis  there  remains two model 
parameters, Co that is related to A:? and yW2 that accounts for &. The 
least  square  fits to  the  data were performed  using u/u* and T, obtained from 
the previous  susceptibility  analysis.? The results of fitting the  data over the 

€ 
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Fig. 4. Critical isochore heat-capacity data for 3He analyzed with  the $4 

model. 

reduced temperature range It1 < including only a constant  analytic 
background term, C1, is shown by the  dashed lines in Fig. ??. The  best 
fit parameter Co = 0.380. We see that  the  extrapolation of this fit to tem- 
peratures  farther away from the  transition is poor.  The fit to  all the data 
including temperature  dependent background terms is shown by the solid 
lines in  Fig. ?? with the best fit parameter Co = 0.386, which is close to  the 
value obtained from the  pure 4* model fit. The constant  background terms 
B,,, determined from Y - ~ ,  and C1 are  strongly  correlated and cannot  be 
unambiguously  determined  from the fitting  procedure. The $* parameters 
for Cv and XT obtained  from  fitting  all the data including statistical  errors 
assuming a 2% measurement  uncertainty are given in Table ??. 

In  summary,  both  the EOS and 44 initial  fitting  procedures show good 
agreement  with  experiment. However, a better  understanding of the  nature 
of the heat-capacity  background  farther away from the  transition  and  the 
influence of possible quantum effects is crucial for a stringent  test of these 
models. The influence of the background will be significantly reduced by per- 
forming  heat-capacity  measurements in microgravity. These  measurements 
closer to  the transition  can  be used to  determine  the leading critical  ampli- 
tudes, A:, and  constant  background  that will then  redwe  the  adjustable 
parameters required for testing crossover models. 

c 
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